Non-local equations of the suspension lubricating layer
Theoretical and applied mechanics, Tome 19 (1993) no. 1, p. 9 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The work uses the micropolar theory of the continuum, in which the asymmetric stress tensor is used to describe the stress state. The theory is applied to the case of suspension movement in a thin layer between approximately parallel surfaces and with curvature radii large enough compared to the average layer thickness 6. Obtained approximate differential equations of motion of the lubricating layer of suspensions, as well as approximate equations for the distribution of the concentration of a thin layer of suspension. Then the resulting system of differential equations is solved, and the integral terms are not taken into account.
@article{TAM_1993_19_1_a1,
     author = {P. Cvetkovi\'c and D. Kuzmanovi\'c and Z. Golubovi\'c},
     title = {Non-local equations of the suspension lubricating layer},
     journal = {Theoretical and applied mechanics},
     pages = {9 },
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1993_19_1_a1/}
}
TY  - JOUR
AU  - P. Cvetković
AU  - D. Kuzmanović
AU  - Z. Golubović
TI  - Non-local equations of the suspension lubricating layer
JO  - Theoretical and applied mechanics
PY  - 1993
SP  - 9 
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1993_19_1_a1/
LA  - en
ID  - TAM_1993_19_1_a1
ER  - 
%0 Journal Article
%A P. Cvetković
%A D. Kuzmanović
%A Z. Golubović
%T Non-local equations of the suspension lubricating layer
%J Theoretical and applied mechanics
%D 1993
%P 9 
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1993_19_1_a1/
%G en
%F TAM_1993_19_1_a1
P. Cvetković; D. Kuzmanović; Z. Golubović. Non-local equations of the suspension lubricating layer. Theoretical and applied mechanics, Tome 19 (1993) no. 1, p. 9 . http://geodesic.mathdoc.fr/item/TAM_1993_19_1_a1/