An nonstability criterion of equlibrium for nonholonomic system
Theoretical and applied mechanics, Tome 18 (1992) no. 1, p. 21 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\Pi(\mathbf q)=\Pi_k(\mathbf q)+\Pi_{k+1}(\mathbf q)+\dots$, $\Pi_k(\mathbf q)\geq2$ and $A(\mathbf q)=A_0+A_s(\mathbf q)+\dots$, $s>1$, be McLaurin series of analytic potential and vector matrix of nonholonomic constraints. It can be proved that if there exist unit vector $\mathbf e\in R^n\{\mathbf q\}$ for which conditions $A^T_0e=0$, $\Pi_k(\mathbf e)=0$ and $\Pi_{k+1}(\mathbf e)0$ are satisfied, then the equilibrium $\mathbf q=\bar{\mathbf q}=0$ is nonstable.
@article{TAM_1992_18_1_a2,
     author = {Ranislav Bulatovi\'c},
     title = {An nonstability criterion of equlibrium for nonholonomic system},
     journal = {Theoretical and applied mechanics},
     pages = {21 },
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1992_18_1_a2/}
}
TY  - JOUR
AU  - Ranislav Bulatović
TI  - An nonstability criterion of equlibrium for nonholonomic system
JO  - Theoretical and applied mechanics
PY  - 1992
SP  - 21 
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1992_18_1_a2/
LA  - en
ID  - TAM_1992_18_1_a2
ER  - 
%0 Journal Article
%A Ranislav Bulatović
%T An nonstability criterion of equlibrium for nonholonomic system
%J Theoretical and applied mechanics
%D 1992
%P 21 
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1992_18_1_a2/
%G en
%F TAM_1992_18_1_a2
Ranislav Bulatović. An nonstability criterion of equlibrium for nonholonomic system. Theoretical and applied mechanics, Tome 18 (1992) no. 1, p. 21 . http://geodesic.mathdoc.fr/item/TAM_1992_18_1_a2/