An nonstability criterion of equlibrium for nonholonomic system
Theoretical and applied mechanics, Tome 18 (1992) no. 1, p. 21

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\Pi(\mathbf q)=\Pi_k(\mathbf q)+\Pi_{k+1}(\mathbf q)+\dots$, $\Pi_k(\mathbf q)\geq2$ and $A(\mathbf q)=A_0+A_s(\mathbf q)+\dots$, $s>1$, be McLaurin series of analytic potential and vector matrix of nonholonomic constraints. It can be proved that if there exist unit vector $\mathbf e\in R^n\{\mathbf q\}$ for which conditions $A^T_0e=0$, $\Pi_k(\mathbf e)=0$ and $\Pi_{k+1}(\mathbf e)0$ are satisfied, then the equilibrium $\mathbf q=\bar{\mathbf q}=0$ is nonstable.
@article{TAM_1992_18_1_a2,
     author = {Ranislav Bulatovi\'c},
     title = {An nonstability criterion of equlibrium for nonholonomic system},
     journal = {Theoretical and applied mechanics},
     pages = {21 },
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1992_18_1_a2/}
}
TY  - JOUR
AU  - Ranislav Bulatović
TI  - An nonstability criterion of equlibrium for nonholonomic system
JO  - Theoretical and applied mechanics
PY  - 1992
SP  - 21 
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1992_18_1_a2/
LA  - en
ID  - TAM_1992_18_1_a2
ER  - 
%0 Journal Article
%A Ranislav Bulatović
%T An nonstability criterion of equlibrium for nonholonomic system
%J Theoretical and applied mechanics
%D 1992
%P 21 
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1992_18_1_a2/
%G en
%F TAM_1992_18_1_a2
Ranislav Bulatović. An nonstability criterion of equlibrium for nonholonomic system. Theoretical and applied mechanics, Tome 18 (1992) no. 1, p. 21 . http://geodesic.mathdoc.fr/item/TAM_1992_18_1_a2/