Some estimations of the nolinear oscillator amplitude subjected to random parametric exitation
Theoretical and applied mechanics, Tome 17 (1991) no. 1, p. 89
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we consider some mean-kiadratic and almost known stable and non-linear oscillators under the influence of random parametric excitation in the form of broadband Gaussian white noise of low intensity and correlation time. It is known that applying the Khasminsky averaging method to the stochastic differential equation of the oscillator yields the stochastic differential equation of Ito. The averaged amplitude, as a solution to this differential equation, is estimated using the method of comparison with the solution of some linear stochastic differential Itô equation.
@article{TAM_1991_17_1_a9,
author = {Svetlana Jankovi\'c and Katica and Stevanovi\'c and Hedrih},
title = {Some estimations of the nolinear oscillator amplitude subjected to random parametric exitation},
journal = {Theoretical and applied mechanics},
pages = {89 },
year = {1991},
volume = {17},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAM_1991_17_1_a9/}
}
TY - JOUR AU - Svetlana Janković AU - Katica AU - Stevanović AU - Hedrih TI - Some estimations of the nolinear oscillator amplitude subjected to random parametric exitation JO - Theoretical and applied mechanics PY - 1991 SP - 89 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/TAM_1991_17_1_a9/ LA - en ID - TAM_1991_17_1_a9 ER -
%0 Journal Article %A Svetlana Janković %A Katica %A Stevanović %A Hedrih %T Some estimations of the nolinear oscillator amplitude subjected to random parametric exitation %J Theoretical and applied mechanics %D 1991 %P 89 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/TAM_1991_17_1_a9/ %G en %F TAM_1991_17_1_a9
Svetlana Janković; Katica ; Stevanović; Hedrih. Some estimations of the nolinear oscillator amplitude subjected to random parametric exitation. Theoretical and applied mechanics, Tome 17 (1991) no. 1, p. 89 . http://geodesic.mathdoc.fr/item/TAM_1991_17_1_a9/