An inversion of Rout's theorem
Theoretical and applied mechanics, Tome 17 (1991) no. 1, p. 31 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

Let $R_0=R_{02}+R_{0j}+\dots$, $R_{02}\leq0$, $j>2$ and $G=G_j+\dots$, be McLaurin series of reduced force function and matrices of gyroscopic forces for the system reduced from holonomic conservative system with cyclic coordinates. By Direct Liapunov method nonstability of tlie stationary motion is proved for the case $s>[(r-2)/2]$ when the first nontrivial form $\hat R_{0r}$ can be positive ($\hat R_0$ is a restriction of $R_0$ function to the hyperspace $R_{02}=0$).
@article{TAM_1991_17_1_a3,
     author = {Ranislav Bulatovi\'c},
     title = {An inversion of {Rout's} theorem},
     journal = {Theoretical and applied mechanics},
     pages = {31 },
     year = {1991},
     volume = {17},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1991_17_1_a3/}
}
TY  - JOUR
AU  - Ranislav Bulatović
TI  - An inversion of Rout's theorem
JO  - Theoretical and applied mechanics
PY  - 1991
SP  - 31 
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TAM_1991_17_1_a3/
LA  - en
ID  - TAM_1991_17_1_a3
ER  - 
%0 Journal Article
%A Ranislav Bulatović
%T An inversion of Rout's theorem
%J Theoretical and applied mechanics
%D 1991
%P 31 
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TAM_1991_17_1_a3/
%G en
%F TAM_1991_17_1_a3
Ranislav Bulatović. An inversion of Rout's theorem. Theoretical and applied mechanics, Tome 17 (1991) no. 1, p. 31 . http://geodesic.mathdoc.fr/item/TAM_1991_17_1_a3/