Variational equations of motion of the mechanical system of variable mass and their integration
Theoretical and applied mechanics, Tome 11 (1985) no. 1, p. 109

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The paper examines the variational equations of motion of a mechanical system of variable mass of the form $\ddot{\xi}^\gamma=A^\gamma_\delta(t)\xi^\gamma+B^\gamma_\delta(t)\dot{\xi}^\delta$, $(\xi,\delta=1,\dots,n)$. Here it is shown how a discrete model of a linear system $x(t_{n+1})=E(t_n)x(t_n)+F(t_n)U$ be used to solve the variations $\xi^\gamma(t)$.
@article{TAM_1985_11_1_a10,
     author = {Du\v{s}an J. Miki\v{c}i\'c},
     title = {Variational equations of motion of the mechanical system of variable mass and their integration},
     journal = {Theoretical and applied mechanics},
     pages = {109 },
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1985_11_1_a10/}
}
TY  - JOUR
AU  - Dušan J. Mikičić
TI  - Variational equations of motion of the mechanical system of variable mass and their integration
JO  - Theoretical and applied mechanics
PY  - 1985
SP  - 109 
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1985_11_1_a10/
LA  - en
ID  - TAM_1985_11_1_a10
ER  - 
%0 Journal Article
%A Dušan J. Mikičić
%T Variational equations of motion of the mechanical system of variable mass and their integration
%J Theoretical and applied mechanics
%D 1985
%P 109 
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1985_11_1_a10/
%G en
%F TAM_1985_11_1_a10
Dušan J. Mikičić. Variational equations of motion of the mechanical system of variable mass and their integration. Theoretical and applied mechanics, Tome 11 (1985) no. 1, p. 109 . http://geodesic.mathdoc.fr/item/TAM_1985_11_1_a10/