Variational equations of motion of the mechanical system of variable mass and their integration
Theoretical and applied mechanics, Tome 11 (1985) no. 1, p. 109 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The paper examines the variational equations of motion of a mechanical system of variable mass of the form $\ddot{\xi}^\gamma=A^\gamma_\delta(t)\xi^\gamma+B^\gamma_\delta(t)\dot{\xi}^\delta$, $(\xi,\delta=1,\dots,n)$. Here it is shown how a discrete model of a linear system $x(t_{n+1})=E(t_n)x(t_n)+F(t_n)U$ be used to solve the variations $\xi^\gamma(t)$.
@article{TAM_1985_11_1_a10,
     author = {Du\v{s}an J. Miki\v{c}i\'c},
     title = {Variational equations of motion of the mechanical system of variable mass and their integration},
     journal = {Theoretical and applied mechanics},
     pages = {109 },
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1985_11_1_a10/}
}
TY  - JOUR
AU  - Dušan J. Mikičić
TI  - Variational equations of motion of the mechanical system of variable mass and their integration
JO  - Theoretical and applied mechanics
PY  - 1985
SP  - 109 
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1985_11_1_a10/
LA  - en
ID  - TAM_1985_11_1_a10
ER  - 
%0 Journal Article
%A Dušan J. Mikičić
%T Variational equations of motion of the mechanical system of variable mass and their integration
%J Theoretical and applied mechanics
%D 1985
%P 109 
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1985_11_1_a10/
%G en
%F TAM_1985_11_1_a10
Dušan J. Mikičić. Variational equations of motion of the mechanical system of variable mass and their integration. Theoretical and applied mechanics, Tome 11 (1985) no. 1, p. 109 . http://geodesic.mathdoc.fr/item/TAM_1985_11_1_a10/