Temperature boundary layer on porous heat-insulated walls in laminar flow
Theoretical and applied mechanics, Tome 10 (1984) no. 1, p. 119
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The paper considers a temperature boundary layer in a flat laminar incompressible flow past a heat-impermeable wall with continuously distributed pores on the surface through which fluid is sucked or blown. To solve this problem, the multiparametric method of L. G. Loitsyansky [1] improved by us in work [2] is used. Universal solutions determined by the numerical method for Prantl numbers: $Pr=1.0$ and $Pr=0.72$ are used to calculate the temperature boundary layer on a cylinder of a circle section and on a standard airfield with the designation NACA 0010-34.
@article{TAM_1984_10_1_a11,
author = {Viktor Saljnikov and Sultana Tupurkovska-Poposka},
title = {Temperature boundary layer on porous heat-insulated walls in laminar flow},
journal = {Theoretical and applied mechanics},
pages = {119 },
year = {1984},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAM_1984_10_1_a11/}
}
TY - JOUR AU - Viktor Saljnikov AU - Sultana Tupurkovska-Poposka TI - Temperature boundary layer on porous heat-insulated walls in laminar flow JO - Theoretical and applied mechanics PY - 1984 SP - 119 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/TAM_1984_10_1_a11/ LA - en ID - TAM_1984_10_1_a11 ER -
Viktor Saljnikov; Sultana Tupurkovska-Poposka. Temperature boundary layer on porous heat-insulated walls in laminar flow. Theoretical and applied mechanics, Tome 10 (1984) no. 1, p. 119 . http://geodesic.mathdoc.fr/item/TAM_1984_10_1_a11/