An equivalence theorem in Poincaré-Četaev variables
Theoretical and applied mechanics, Tome 4 (1978) no. 1, p. 67 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In Lagrangian dynamics the equivalence theorem for a conservative holonomie system is based upon the equivalence of Hamilton’s equations to a certain pfaffian equation. In this paper a generalisation of the mentioned theorem to Poincaré-Četaev variables has been done and the generalised equivalence theorem is further used to prove the Hamilton-Jacobi theorem.
@article{TAM_1978_4_1_a7,
     author = {M. Hussain},
     title = {An equivalence theorem in {Poincar\'e-\v{C}etaev} variables},
     journal = {Theoretical and applied mechanics},
     pages = {67 },
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1978_4_1_a7/}
}
TY  - JOUR
AU  - M. Hussain
TI  - An equivalence theorem in Poincaré-Četaev variables
JO  - Theoretical and applied mechanics
PY  - 1978
SP  - 67 
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1978_4_1_a7/
LA  - en
ID  - TAM_1978_4_1_a7
ER  - 
%0 Journal Article
%A M. Hussain
%T An equivalence theorem in Poincaré-Četaev variables
%J Theoretical and applied mechanics
%D 1978
%P 67 
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1978_4_1_a7/
%G en
%F TAM_1978_4_1_a7
M. Hussain. An equivalence theorem in Poincaré-Četaev variables. Theoretical and applied mechanics, Tome 4 (1978) no. 1, p. 67 . http://geodesic.mathdoc.fr/item/TAM_1978_4_1_a7/