Composite materials and mechanics with internal degrees of freedom
Theoretical and applied mechanics, Tome 2 (1976) no. 1, p. 33 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The microscopic equation of motion for a compound with inclusions in the matrix is transformed. By means of averaging processes, a macroscopic mechanics is derived which, in addition to the mean displacement field, also contains "multipole fields". A local theory described by differential equations is in principle limited to the long-wave range.
@article{TAM_1976_2_1_a4,
     author = {Gerhard Diener and Christian Raabe and Hans-Georg Sch\"opf},
     title = {Composite materials and mechanics with internal degrees of freedom},
     journal = {Theoretical and applied mechanics},
     pages = {33 },
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a4/}
}
TY  - JOUR
AU  - Gerhard Diener
AU  - Christian Raabe
AU  - Hans-Georg Schöpf
TI  - Composite materials and mechanics with internal degrees of freedom
JO  - Theoretical and applied mechanics
PY  - 1976
SP  - 33 
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a4/
LA  - en
ID  - TAM_1976_2_1_a4
ER  - 
%0 Journal Article
%A Gerhard Diener
%A Christian Raabe
%A Hans-Georg Schöpf
%T Composite materials and mechanics with internal degrees of freedom
%J Theoretical and applied mechanics
%D 1976
%P 33 
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a4/
%G en
%F TAM_1976_2_1_a4
Gerhard Diener; Christian Raabe; Hans-Georg Schöpf. Composite materials and mechanics with internal degrees of freedom. Theoretical and applied mechanics, Tome 2 (1976) no. 1, p. 33 . http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a4/