Composite materials and mechanics with internal degrees of freedom
Theoretical and applied mechanics, Tome 2 (1976) no. 1, p. 33
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The microscopic equation of motion for a compound with inclusions in the matrix is transformed. By means of averaging processes, a macroscopic mechanics is derived which, in addition to the mean displacement field, also contains "multipole fields". A local theory described by differential equations is in principle limited to the long-wave range.
@article{TAM_1976_2_1_a4,
author = {Gerhard Diener and Christian Raabe and Hans-Georg Sch\"opf},
title = {Composite materials and mechanics with internal degrees of freedom},
journal = {Theoretical and applied mechanics},
pages = {33 },
year = {1976},
volume = {2},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a4/}
}
TY - JOUR AU - Gerhard Diener AU - Christian Raabe AU - Hans-Georg Schöpf TI - Composite materials and mechanics with internal degrees of freedom JO - Theoretical and applied mechanics PY - 1976 SP - 33 VL - 2 IS - 1 UR - http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a4/ LA - en ID - TAM_1976_2_1_a4 ER -
Gerhard Diener; Christian Raabe; Hans-Georg Schöpf. Composite materials and mechanics with internal degrees of freedom. Theoretical and applied mechanics, Tome 2 (1976) no. 1, p. 33 . http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a4/