Weil 2-rigs
Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 382-402.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Among commutative unital semirings (rigs, for short), we call Weil the ones that have a unique homomorphism into the initial algebra. Weil rigs can be thought of as coordinate algebras of spaces with a single point. In the category of additively idempotent rigs (2-rigs, for short) 2 is the initial algebra. We characterize Weil 2-rigs as those that have a unique saturated prime ideal and provide an axiomatization thereof in geometric logic. We further prove that the category of Weil 2-rigs is a co-reflective full subcategory of the category of 2-rigs. Finally, we show that both the varieties of rigs, 2-rigs and integral rigs are generated by finite rigs with a unique homomorphism into 2.
Publié le :
Classification : 16Y60, 03C05
Keywords: Extensive categories, Rigs, Weil algebra
@article{TAC_2025_43_a11,
     author = {Luca Spada and Gavin St. John},
     title = {Weil 2-rigs},
     journal = {Theory and applications of categories},
     pages = {382--402},
     publisher = {mathdoc},
     volume = {43},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2025_43_a11/}
}
TY  - JOUR
AU  - Luca Spada
AU  - Gavin St. John
TI  - Weil 2-rigs
JO  - Theory and applications of categories
PY  - 2025
SP  - 382
EP  - 402
VL  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2025_43_a11/
LA  - en
ID  - TAC_2025_43_a11
ER  - 
%0 Journal Article
%A Luca Spada
%A Gavin St. John
%T Weil 2-rigs
%J Theory and applications of categories
%D 2025
%P 382-402
%V 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2025_43_a11/
%G en
%F TAC_2025_43_a11
Luca Spada; Gavin St. John. Weil 2-rigs. Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 382-402. http://geodesic.mathdoc.fr/item/TAC_2025_43_a11/