Internal parameterization of hyperconnected quotients
Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 263-313
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
One of the most fundamental facts in topos theory is the internal parameterization of subtoposes: the bijective correspondence between subtoposes and Lawvere-Tierney topologies. In this paper, we introduce a new but elementary concept, "a local state classifier", and give an analogous internal parameterization of hyperconnected quotients (i.e., hyperconnected geometric morphisms from a topos). As a corollary, we obtain a solution to the Boolean case of the first problem of Lawvere's open problems.
Publié le :
Classification :
18B25
Keywords: Topos, hyperconnected geometric morphism, internal semilattice
Keywords: Topos, hyperconnected geometric morphism, internal semilattice
@article{TAC_2024_42_a10,
author = {Ryuya Hora},
title = {Internal parameterization of hyperconnected quotients},
journal = {Theory and applications of categories},
pages = {263--313},
year = {2024},
volume = {42},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/}
}
Ryuya Hora. Internal parameterization of hyperconnected quotients. Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 263-313. http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/