Internal parameterization of hyperconnected quotients
Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 263-313

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

One of the most fundamental facts in topos theory is the internal parameterization of subtoposes: the bijective correspondence between subtoposes and Lawvere-Tierney topologies. In this paper, we introduce a new but elementary concept, "a local state classifier", and give an analogous internal parameterization of hyperconnected quotients (i.e., hyperconnected geometric morphisms from a topos). As a corollary, we obtain a solution to the Boolean case of the first problem of Lawvere's open problems.

Publié le :
Classification : 18B25
Keywords: Topos, hyperconnected geometric morphism, internal semilattice
@article{TAC_2024_42_a10,
     author = {Ryuya Hora},
     title = {Internal parameterization of hyperconnected quotients},
     journal = {Theory and applications of categories},
     pages = {263--313},
     publisher = {mathdoc},
     volume = {42},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/}
}
TY  - JOUR
AU  - Ryuya Hora
TI  - Internal parameterization of hyperconnected quotients
JO  - Theory and applications of categories
PY  - 2024
SP  - 263
EP  - 313
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/
LA  - en
ID  - TAC_2024_42_a10
ER  - 
%0 Journal Article
%A Ryuya Hora
%T Internal parameterization of hyperconnected quotients
%J Theory and applications of categories
%D 2024
%P 263-313
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/
%G en
%F TAC_2024_42_a10
Ryuya Hora. Internal parameterization of hyperconnected quotients. Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 263-313. http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/