Internal parameterization of hyperconnected quotients
Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 263-313.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

One of the most fundamental facts in topos theory is the internal parameterization of subtoposes: the bijective correspondence between subtoposes and Lawvere-Tierney topologies. In this paper, we introduce a new but elementary concept, "a local state classifier", and give an analogous internal parameterization of hyperconnected quotients (i.e., hyperconnected geometric morphisms from a topos). As a corollary, we obtain a solution to the Boolean case of the first problem of Lawvere's open problems.
Publié le :
Classification : 18B25
Keywords: Topos, hyperconnected geometric morphism, internal semilattice
@article{TAC_2024_42_a10,
     author = {Ryuya Hora},
     title = {Internal parameterization of hyperconnected quotients},
     journal = {Theory and applications of categories},
     pages = {263--313},
     publisher = {mathdoc},
     volume = {42},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/}
}
TY  - JOUR
AU  - Ryuya Hora
TI  - Internal parameterization of hyperconnected quotients
JO  - Theory and applications of categories
PY  - 2024
SP  - 263
EP  - 313
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/
LA  - en
ID  - TAC_2024_42_a10
ER  - 
%0 Journal Article
%A Ryuya Hora
%T Internal parameterization of hyperconnected quotients
%J Theory and applications of categories
%D 2024
%P 263-313
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/
%G en
%F TAC_2024_42_a10
Ryuya Hora. Internal parameterization of hyperconnected quotients. Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 263-313. http://geodesic.mathdoc.fr/item/TAC_2024_42_a10/