Inner automorphisms as 2-cells
Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 19-40.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Abstract inner automorphisms can be used to promote any category into a 2-category, and we study two-dimensional limits and colimits in the resulting 2-categories. Existing connected colimits and limits in the starting category become two-dimensional colimits and limits under fairly general conditions. Under the same conditions, colimits in the underlying category can be used to build many notable two-dimensional colimits such as coequifiers and coinserters. In contrast, disconnected colimits or genuinely 2-categorical limits such as inserters and equifiers and cotensors cannot exist unless no nontrivial abstract inner automorphisms exist and the resulting 2-category is locally discrete. We also study briefly when an ordinary functor can be extended to a 2-functor between the resulting 2-categories.
Publié le :
Classification : 18A30, 18G45, 18N10
Keywords: Inner automorphisms, crossed modules, limits and colimits
@article{TAC_2024_42_a1,
     author = {Pieter Hofstra and Martti Karvonen},
     title = {Inner automorphisms as 2-cells},
     journal = {Theory and applications of categories},
     pages = {19--40},
     publisher = {mathdoc},
     volume = {42},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_42_a1/}
}
TY  - JOUR
AU  - Pieter Hofstra
AU  - Martti Karvonen
TI  - Inner automorphisms as 2-cells
JO  - Theory and applications of categories
PY  - 2024
SP  - 19
EP  - 40
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_42_a1/
LA  - en
ID  - TAC_2024_42_a1
ER  - 
%0 Journal Article
%A Pieter Hofstra
%A Martti Karvonen
%T Inner automorphisms as 2-cells
%J Theory and applications of categories
%D 2024
%P 19-40
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_42_a1/
%G en
%F TAC_2024_42_a1
Pieter Hofstra; Martti Karvonen. Inner automorphisms as 2-cells. Theory and applications of categories, Hofstra Festschrift, Tome 42 (2024), pp. 19-40. http://geodesic.mathdoc.fr/item/TAC_2024_42_a1/