Notions of enriched purity
Theory and applications of categories, Tome 41 (2024), pp. 2058-2104.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce enriched notions of purity depending on the left class E of a factorization system on the base V of enrichment. Ordinary purity is given by the class of surjective mappings in the category of sets. Under specific assumptions, covering enrichment over quantale-valued metric spaces, ω-complete posets, and quasivarieties, we characterize the (λ, E)-injectivity classes of locally presentable V-categories in terms of closure under a class of limits, λ-filtered colimits, and (λ,E)-pure subobjects.
Publié le :
Classification : 18D20, 18C35
Keywords: enriched accessible categories, enriched purity, enriched injectivity classes
@article{TAC_2024_41_a57,
     author = {Ji\v{r}{\'\i} Rosick\'y and Giacomo Tendas},
     title = {Notions of enriched purity},
     journal = {Theory and applications of categories},
     pages = {2058--2104},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a57/}
}
TY  - JOUR
AU  - Jiří Rosický
AU  - Giacomo Tendas
TI  - Notions of enriched purity
JO  - Theory and applications of categories
PY  - 2024
SP  - 2058
EP  - 2104
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a57/
LA  - en
ID  - TAC_2024_41_a57
ER  - 
%0 Journal Article
%A Jiří Rosický
%A Giacomo Tendas
%T Notions of enriched purity
%J Theory and applications of categories
%D 2024
%P 2058-2104
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a57/
%G en
%F TAC_2024_41_a57
Jiří Rosický; Giacomo Tendas. Notions of enriched purity. Theory and applications of categories, Tome 41 (2024), pp. 2058-2104. http://geodesic.mathdoc.fr/item/TAC_2024_41_a57/