We prove a number of results of the following common flavor: for a category C of topological or uniform spaces with all manner of other properties of common interest (separation / completeness / compactness axioms), a group (or monoid) G equipped with various types of topological structure (topologies, uniformities) and the corresponding category C^G of appropriately compatible G-flows in C, the forgetful functor C^G → C is monadic. In all cases of interest the domain category C^G is also cocomplete, so that results on adjunction lifts along monadic functors apply to provide equivariant completion and/or compactification functors. This recovers, unifies and generalizes a number of such results in the literature due to de Vries, Mart'yanov and others on existence of equivariant compactifications / completions and cocompleteness of flow categories.
@article{TAC_2024_41_a43,
author = {Alexandru Chirvasitu},
title = {Monadic functors forgetful of (dis)inhibited actions},
journal = {Theory and applications of categories},
pages = {1536--1556},
publisher = {mathdoc},
volume = {41},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a43/}
}
TY - JOUR
AU - Alexandru Chirvasitu
TI - Monadic functors forgetful of (dis)inhibited actions
JO - Theory and applications of categories
PY - 2024
SP - 1536
EP - 1556
VL - 41
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TAC_2024_41_a43/
LA - en
ID - TAC_2024_41_a43
ER -
%0 Journal Article
%A Alexandru Chirvasitu
%T Monadic functors forgetful of (dis)inhibited actions
%J Theory and applications of categories
%D 2024
%P 1536-1556
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a43/
%G en
%F TAC_2024_41_a43
Alexandru Chirvasitu. Monadic functors forgetful of (dis)inhibited actions. Theory and applications of categories, Tome 41 (2024), pp. 1536-1556. http://geodesic.mathdoc.fr/item/TAC_2024_41_a43/