Condensation inversion and Witt equivalence via generalised orbifolds
Theory and applications of categories, Tome 41 (2024), pp. 1203-1292.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In Mulevičius-Runkel, Quant. Topol. 13:3 (2022), it was shown how a so-called orbifold datum A in a given modular fusion category (MFC) C produces a new MFC C(A). Examples of these associated MFCs include condensations, i.e. the categories of local modules of a separable commutative algebra B in C. In this paper we prove that the relation C~C(A) on MFCs is the same as Witt equivalence. This is achieved in part by providing one with an explicit construction for inverting condensations, i.e. finding an orbifold datum A in the category of local modules of B, whose associated MFC is equivalent to C. As a tool used in this construction we also explore what kinds of functors F:C->D between MFCs preserve orbifold data. It turns out that F need not necessarily be strong monoidal, but rather a `ribbon Frobenius' functor, which has weak monoidal and weak comonoidal structures, related by a Frobenius-like property.
Publié le :
Classification : 18M20, 57K16
Keywords: modular tensor categories, orbifold construction, topological quantum field theory
@article{TAC_2024_41_a35,
     author = {Vincentas Mulevi\v{c}ius},
     title = {Condensation inversion and {Witt} equivalence via generalised orbifolds},
     journal = {Theory and applications of categories},
     pages = {1203--1292},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a35/}
}
TY  - JOUR
AU  - Vincentas Mulevičius
TI  - Condensation inversion and Witt equivalence via generalised orbifolds
JO  - Theory and applications of categories
PY  - 2024
SP  - 1203
EP  - 1292
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a35/
LA  - en
ID  - TAC_2024_41_a35
ER  - 
%0 Journal Article
%A Vincentas Mulevičius
%T Condensation inversion and Witt equivalence via generalised orbifolds
%J Theory and applications of categories
%D 2024
%P 1203-1292
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a35/
%G en
%F TAC_2024_41_a35
Vincentas Mulevičius. Condensation inversion and Witt equivalence via generalised orbifolds. Theory and applications of categories, Tome 41 (2024), pp. 1203-1292. http://geodesic.mathdoc.fr/item/TAC_2024_41_a35/