Pivotality, twisted centres, and the anti-double of a Hopf monad
Theory and applications of categories, Tome 41 (2024), pp. 86-149.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Finite-dimensional Hopf algebras admit a correspondence between so-called pairs in involution, one-dimensional anti-Yetter-Drinfeld modules and algebra isomorphisms between the Drinfeld and anti-Drinfeld double. We extend it to general rigid monoidal categories and provide a monadic interpretation under the assumption that certain coends exist. Hereto we construct and study the anti-Drinfeld double of a Hopf monad. As an application the connection with the pivotality of Drinfeld centres and their underlying categories is discussed.
Publié le :
Classification : primary: 18M15, secondary: 16T05, 18C20, 18M30
Keywords: Pivotal categories, module categories, centres, heaps, Hopf monads, comodule monads, anti-Drinfeld double
@article{TAC_2024_41_a3,
     author = {Sebastian Halbig and Tony Zorman},
     title = {Pivotality, twisted centres, and the anti-double of a {Hopf} monad},
     journal = {Theory and applications of categories},
     pages = {86--149},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a3/}
}
TY  - JOUR
AU  - Sebastian Halbig
AU  - Tony Zorman
TI  - Pivotality, twisted centres, and the anti-double of a Hopf monad
JO  - Theory and applications of categories
PY  - 2024
SP  - 86
EP  - 149
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a3/
LA  - en
ID  - TAC_2024_41_a3
ER  - 
%0 Journal Article
%A Sebastian Halbig
%A Tony Zorman
%T Pivotality, twisted centres, and the anti-double of a Hopf monad
%J Theory and applications of categories
%D 2024
%P 86-149
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a3/
%G en
%F TAC_2024_41_a3
Sebastian Halbig; Tony Zorman. Pivotality, twisted centres, and the anti-double of a Hopf monad. Theory and applications of categories, Tome 41 (2024), pp. 86-149. http://geodesic.mathdoc.fr/item/TAC_2024_41_a3/