Bicategorical traces and cotraces
Theory and applications of categories, Tome 41 (2024), pp. 707-759
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
The familiar trace of a square matrix generalizes to a trace of an endomorphism of a dualizable object in a symmetric monoidal category. To extend these ideas to other settings, such as modules over non-commutative rings, the trace can be generalized to a bicategory equipped with additional structure called a shadow. We propose a notion of bicategorical cotrace of certain maps involving dualizable objects in a closed bicategory equipped with a coshadow, and we use this framework to draw connections to work of Lipman on residues and traces with Hochschild (co)homology, and to work of Ganter and Kapranov on 2-representations and 2-characters.
Publié le :
Classification :
16D90, 18D15, 18M05, 18M30, 18N10
Keywords: bicategory, cotrace, Hochschild homology, Morita equivalence, shadow, string diagram, trace
Keywords: bicategory, cotrace, Hochschild homology, Morita equivalence, shadow, string diagram, trace
@article{TAC_2024_41_a21,
author = {Justin Barhite},
title = {Bicategorical traces and cotraces},
journal = {Theory and applications of categories},
pages = {707--759},
year = {2024},
volume = {41},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a21/}
}
Justin Barhite. Bicategorical traces and cotraces. Theory and applications of categories, Tome 41 (2024), pp. 707-759. http://geodesic.mathdoc.fr/item/TAC_2024_41_a21/