The core groupoid can suffice
Theory and applications of categories, Tome 41 (2024), pp. 686-706.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This work results from a study of Nicholas Kuhn's paper entitled "Generic representation theory of finite fields in nondescribing characteristic". Our goal is to abstract the categorical structure required to obtain an equivalence between functor categories [F,V] and [G,V] where G is the core groupoid of the category F and V is a category of modules over a commutative ring. Examples other than Kuhn's are covered by this general setting.
Publié le :
Classification : 20C33, 16D90, 18M80, 20L05, 18A32, 18B40, 18D60
Keywords: general linear groupoid, finite field, monoid representation, Joyal species, Morita equivalence, Dold-Kan-type theorems
@article{TAC_2024_41_a20,
     author = {Ross Street},
     title = {The core groupoid can suffice},
     journal = {Theory and applications of categories},
     pages = {686--706},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a20/}
}
TY  - JOUR
AU  - Ross Street
TI  - The core groupoid can suffice
JO  - Theory and applications of categories
PY  - 2024
SP  - 686
EP  - 706
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a20/
LA  - en
ID  - TAC_2024_41_a20
ER  - 
%0 Journal Article
%A Ross Street
%T The core groupoid can suffice
%J Theory and applications of categories
%D 2024
%P 686-706
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a20/
%G en
%F TAC_2024_41_a20
Ross Street. The core groupoid can suffice. Theory and applications of categories, Tome 41 (2024), pp. 686-706. http://geodesic.mathdoc.fr/item/TAC_2024_41_a20/