Factorization systems and double categories
Theory and applications of categories, Tome 41 (2024), pp. 551-592.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that factorization systems, both strict and orthogonal, can be equivalently described as double categories satisfying certain properties. This provides conceptual reasons for why the category of sets and partial maps or the category of small categories and cofunctors admit orthogonal factorization systems. The theory also gives an explicit description of various lax morphism classifiers and explains why they admit strict factorization systems.
Publié le :
Classification : 18A32, 18B10, 18M05, 18N10, 18N15
Keywords: factorization system, double category, lax morphism
@article{TAC_2024_41_a17,
     author = {Miloslav \v{S}t\v{e}p\'an},
     title = {Factorization systems and double categories},
     journal = {Theory and applications of categories},
     pages = {551--592},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a17/}
}
TY  - JOUR
AU  - Miloslav Štěpán
TI  - Factorization systems and double categories
JO  - Theory and applications of categories
PY  - 2024
SP  - 551
EP  - 592
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a17/
LA  - en
ID  - TAC_2024_41_a17
ER  - 
%0 Journal Article
%A Miloslav Štěpán
%T Factorization systems and double categories
%J Theory and applications of categories
%D 2024
%P 551-592
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a17/
%G en
%F TAC_2024_41_a17
Miloslav Štěpán. Factorization systems and double categories. Theory and applications of categories, Tome 41 (2024), pp. 551-592. http://geodesic.mathdoc.fr/item/TAC_2024_41_a17/