On reachability categories, persistence, and commuting algebras of quivers
Theory and applications of categories, Tome 41 (2024), pp. 426-448.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For a finite quiver Q, we study the reachability category Reach_Q. We investigate the properties of Reach_Q from both a categorical and a topological viewpoint. In particular, we compare Reach_Q with Path_Q, the category freely generated by Q. As a first application, we study the category algebra of Reach_Q, which is isomorphic to the commuting algebra of Q. As a consequence, we recover, in a categorical framework, previous results obtained by Green and Schroll; we show that the commuting algebra of Q is Morita equivalent to the incidence algebra of a poset, the reachability poset. We further show that commuting algebras are Morita equivalent if and only if the reachability posets are isomorphic. As a second application, we define persistent Hochschild homology of quivers via reachability categories.
Publié le :
Classification : 16B50, 16P10, 05E10, 18B35
Keywords: reachability category, commuting algebras, persistent Hochschild homology
@article{TAC_2024_41_a11,
     author = {Luigi Caputi and Henri Riihim\"aki},
     title = {On reachability categories, persistence, and commuting algebras of quivers},
     journal = {Theory and applications of categories},
     pages = {426--448},
     publisher = {mathdoc},
     volume = {41},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_41_a11/}
}
TY  - JOUR
AU  - Luigi Caputi
AU  - Henri Riihimäki
TI  - On reachability categories, persistence, and commuting algebras of quivers
JO  - Theory and applications of categories
PY  - 2024
SP  - 426
EP  - 448
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_41_a11/
LA  - en
ID  - TAC_2024_41_a11
ER  - 
%0 Journal Article
%A Luigi Caputi
%A Henri Riihimäki
%T On reachability categories, persistence, and commuting algebras of quivers
%J Theory and applications of categories
%D 2024
%P 426-448
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_41_a11/
%G en
%F TAC_2024_41_a11
Luigi Caputi; Henri Riihimäki. On reachability categories, persistence, and commuting algebras of quivers. Theory and applications of categories, Tome 41 (2024), pp. 426-448. http://geodesic.mathdoc.fr/item/TAC_2024_41_a11/