Distributive idempotents in an order-enriched category
Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 278-300 Cet article a éte moissonné depuis la source Theory and Applications of Categories website

Voir la notice de l'article

We introduce distributive maps between lattices and consider the categorical assumption that distributive idempotents split. We explore this assumption in the context of a categorical axiomatization of the category of locales. The assumption is shown to be stable under groupoids (this includes slice stability) and we further show that it implies that triquotient surjections are effective descent morphisms. This result follows even without assuming that the underlying (axiomatized) category of locales has coequalizers.

Publié le :
Classification : 06D22, 03G30
Keywords: Locale, topos, categorical logic, powerlocales, order enriched, distributive lattice, axioms
@article{TAC_2024_40_a8,
     author = {Christopher Townsend},
     title = {Distributive idempotents in an order-enriched category},
     journal = {Theory and applications of categories},
     pages = {278--300},
     year = {2024},
     volume = {40},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_40_a8/}
}
TY  - JOUR
AU  - Christopher Townsend
TI  - Distributive idempotents in an order-enriched category
JO  - Theory and applications of categories
PY  - 2024
SP  - 278
EP  - 300
VL  - 40
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_40_a8/
LA  - en
ID  - TAC_2024_40_a8
ER  - 
%0 Journal Article
%A Christopher Townsend
%T Distributive idempotents in an order-enriched category
%J Theory and applications of categories
%D 2024
%P 278-300
%V 40
%U http://geodesic.mathdoc.fr/item/TAC_2024_40_a8/
%G en
%F TAC_2024_40_a8
Christopher Townsend. Distributive idempotents in an order-enriched category. Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 278-300. http://geodesic.mathdoc.fr/item/TAC_2024_40_a8/