Geometric morphisms between toposes of monoid actions: factorization systems
Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 80-129.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let M, N be monoids, and PSh(M), Psh(N) their respective categories of right actions on sets. In this paper, we systematically investigate correspondences between properties of geometric morphisms PSh(M) --> PSh(N) and properties of the semigroup homomorphisms M --> N or flat-left-N-right-M-sets inducing them. More specifically, we consider properties of geometric morphisms featuring in factorization systems, namely: surjections, inclusions, localic morphisms, hyperconnected morphisms, terminal-connected morphisms, étale morphisms, pure morphisms and complete spreads. We end with an application of topos-theoretic Galois theory to the special case of toposes of the form PSh(M).
Publié le :
Classification : 18B25, 20M30
Keywords: topos, monoid, factorization, terminal-connected, étale, pure, complete spread
@article{TAC_2024_40_a3,
     author = {Jens Hemelaer and Morgan Rogers},
     title = {Geometric morphisms between toposes of monoid actions: factorization systems},
     journal = {Theory and applications of categories},
     pages = {80--129},
     publisher = {mathdoc},
     volume = {40},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_40_a3/}
}
TY  - JOUR
AU  - Jens Hemelaer
AU  - Morgan Rogers
TI  - Geometric morphisms between toposes of monoid actions: factorization systems
JO  - Theory and applications of categories
PY  - 2024
SP  - 80
EP  - 129
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_40_a3/
LA  - en
ID  - TAC_2024_40_a3
ER  - 
%0 Journal Article
%A Jens Hemelaer
%A Morgan Rogers
%T Geometric morphisms between toposes of monoid actions: factorization systems
%J Theory and applications of categories
%D 2024
%P 80-129
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_40_a3/
%G en
%F TAC_2024_40_a3
Jens Hemelaer; Morgan Rogers. Geometric morphisms between toposes of monoid actions: factorization systems. Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 80-129. http://geodesic.mathdoc.fr/item/TAC_2024_40_a3/