The oplax limit of an enriched category
Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 390-412.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that 2-categories of the form B-Cat are closed under slicing, provided that we allow B to range over bicategories (rather than, say, monoidal categories). That is, for any B-category X, we define a bicategory B/X such that B-cat/X ~= (B/X)-Cat. The bicategory B/X is characterized as the oplax limit of X, regarded as a lax functor from a chaotic category to B, in the 2-category BICAT of bicategories, lax functors and icons. We prove this conceptually, through limit-preservation properties of the 2-functor BICAT -> 2-CAT which maps each bicategory B to the 2-category B-Cat. When B satisfies a mild local completeness condition, we also show that the isomorphism B-Cat/X ~= (B/X)-Cat restricts to a correspondence between fibrations in B-Cat over X on the one hand, and B/X-categories admitting certain powers on the other.
Publié le :
Classification : 18D20, 18N10
Keywords: Enriched categories, bicategories
@article{TAC_2024_40_a13,
     author = {Soichiro Fujii and Stephen Lack},
     title = {The oplax limit of an enriched category},
     journal = {Theory and applications of categories},
     pages = {390--412},
     publisher = {mathdoc},
     volume = {40},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_40_a13/}
}
TY  - JOUR
AU  - Soichiro Fujii
AU  - Stephen Lack
TI  - The oplax limit of an enriched category
JO  - Theory and applications of categories
PY  - 2024
SP  - 390
EP  - 412
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_40_a13/
LA  - en
ID  - TAC_2024_40_a13
ER  - 
%0 Journal Article
%A Soichiro Fujii
%A Stephen Lack
%T The oplax limit of an enriched category
%J Theory and applications of categories
%D 2024
%P 390-412
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_40_a13/
%G en
%F TAC_2024_40_a13
Soichiro Fujii; Stephen Lack. The oplax limit of an enriched category. Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 390-412. http://geodesic.mathdoc.fr/item/TAC_2024_40_a13/