Normalizers in the non-pointed context
Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 32-62.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The aim of this work is to point out a strong structural phenomenon hidden behind the existence of normalizers through the investigation of this property in the non-pointed context: given any category E, a certain property of the fibration of points \P_E: Pt(E) --> E guarentees the existence of normalizers. This property becomes a characterization of this existence when E is quasi-pointed and protomodular. This property is also showed to be equivalent to a property of the category Grd E of internal groupoids in E which is almost opposite, for the monomorphic internal functors, of the comprehensive factorization.
Publié le :
Classification : 18A05, 18B99, 18E13, 08C05, 08A30, 08A99
Keywords: equivalence relation, equivalence class, normal subobject, normalizers, Mal'tsev and protomodular categories, internal categories and groupoids, comprehensive factorization, non-pointed additive categories
@article{TAC_2024_40_a1,
     author = {Dominique Bourn},
     title = {Normalizers in the non-pointed context},
     journal = {Theory and applications of categories},
     pages = {32--62},
     publisher = {mathdoc},
     volume = {40},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2024_40_a1/}
}
TY  - JOUR
AU  - Dominique Bourn
TI  - Normalizers in the non-pointed context
JO  - Theory and applications of categories
PY  - 2024
SP  - 32
EP  - 62
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2024_40_a1/
LA  - en
ID  - TAC_2024_40_a1
ER  - 
%0 Journal Article
%A Dominique Bourn
%T Normalizers in the non-pointed context
%J Theory and applications of categories
%D 2024
%P 32-62
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2024_40_a1/
%G en
%F TAC_2024_40_a1
Dominique Bourn. Normalizers in the non-pointed context. Theory and applications of categories, Bunge Festschrift, Tome 40 (2024), pp. 32-62. http://geodesic.mathdoc.fr/item/TAC_2024_40_a1/