Pointed semibiproducts of monoids
Theory and applications of categories, Tome 39 (2023), pp. 172-185.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A new notion of a (pointed) semibiproduct is introduced, which, in the case of groups amounts to an extension equipped with a set-theoretical section. When the section is a group homomorphism then a pointed semibiproduct is the same as a group split extension. The main result of the paper is a characterization of pointed semibiproducts of monoids using a structure that is a generalization of the action that is used in the definition of a semidirect product of groups.
Publié le :
Classification : 18G50, 20M10, 20M32
Keywords: Semibiproduct, biproduct, semidirect product of groups and monoids, pointed semibiproduct, semibiproduct extension, pointed monoid action system, Schreier extension
@article{TAC_2023_39_a5,
     author = {Nelson Martins-Ferreira},
     title = {Pointed semibiproducts of monoids},
     journal = {Theory and applications of categories},
     pages = {172--185},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a5/}
}
TY  - JOUR
AU  - Nelson Martins-Ferreira
TI  - Pointed semibiproducts of monoids
JO  - Theory and applications of categories
PY  - 2023
SP  - 172
EP  - 185
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a5/
LA  - en
ID  - TAC_2023_39_a5
ER  - 
%0 Journal Article
%A Nelson Martins-Ferreira
%T Pointed semibiproducts of monoids
%J Theory and applications of categories
%D 2023
%P 172-185
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a5/
%G en
%F TAC_2023_39_a5
Nelson Martins-Ferreira. Pointed semibiproducts of monoids. Theory and applications of categories, Tome 39 (2023), pp. 172-185. http://geodesic.mathdoc.fr/item/TAC_2023_39_a5/