A Gray-categorical pasting theorem
Theory and applications of categories, Tome 39 (2023), pp. 150-171.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The notion of Gray-category, a semi-strict 3-category in which the middle four interchange is weakened to an isomorphism, is central in the study of three-dimensional category theory. In this context it is common practice to use 2-dimensional pasting diagrams to express composites of 2-cells, however there is no thorough treatment in the literature justifying this procedure. We fill this gap by providing a formal approach to pasting in Gray-categories and by proving that such composites are uniquely defined up to a contractible groupoid of choices.
Publié le :
Classification : 18N20, 16S15, 03E20
Keywords: Gray-categories, pasting diagrams
@article{TAC_2023_39_a4,
     author = {Nicola Di Vittorio},
     title = {A {Gray-categorical} pasting theorem},
     journal = {Theory and applications of categories},
     pages = {150--171},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a4/}
}
TY  - JOUR
AU  - Nicola Di Vittorio
TI  - A Gray-categorical pasting theorem
JO  - Theory and applications of categories
PY  - 2023
SP  - 150
EP  - 171
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a4/
LA  - en
ID  - TAC_2023_39_a4
ER  - 
%0 Journal Article
%A Nicola Di Vittorio
%T A Gray-categorical pasting theorem
%J Theory and applications of categories
%D 2023
%P 150-171
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a4/
%G en
%F TAC_2023_39_a4
Nicola Di Vittorio. A Gray-categorical pasting theorem. Theory and applications of categories, Tome 39 (2023), pp. 150-171. http://geodesic.mathdoc.fr/item/TAC_2023_39_a4/