Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Given an ∞-bicategory D with underlying ∞-category D_0, we construct a Cartesian fibration Tw(D) --> Tw(D_0) x D_0^op, which we call the enhanced twisted arrow ∞-category, classifying the restricted mapping category functor Map_D:D_0^op x D_0 --> D^op \times D --> Cat_∞. With the aid of this new construction, we provide a description of the ∞-category of natural transformations Nat(F,G) as an end for any functors F and G from an ∞-category to an ∞-bicategory. As an application of our results, we demonstrate that the definition of weighted colimits studied by Gepner-Haugseng-Nikolaus satisfies the expected 2-dimensional universal property.
@article{TAC_2023_39_a3, author = {Fernando Abell\'an Garc{\'\i}a and Walker H. Stern}, title = {Enhanced twisted arrow categories}, journal = {Theory and applications of categories}, pages = {98--149}, publisher = {mathdoc}, volume = {39}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a3/} }
Fernando Abellán García; Walker H. Stern. Enhanced twisted arrow categories. Theory and applications of categories, Tome 39 (2023), pp. 98-149. http://geodesic.mathdoc.fr/item/TAC_2023_39_a3/