Hopf Monads on Biproducts
Theory and applications of categories, Tome 39 (2023), pp. 804-823.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A Hopf monad, in the sense of Bruguières, Lack, and Virelizier, is a special kind of monad that can be defined for any monoidal category. In this note, we study Hopf monads in the case of a category with finite biproducts, seen as a symmetric monoidal category. We show that for biproducts, a Hopf monad is precisely characterized as a monad equipped with an extra natural transformation satisfying three axioms, which we call a fusion invertor. We will also consider three special cases: representable Hopf monads, idempotent Hopf monads, and when the category also has negatives. In these cases, the fusion invertor will always be of a specific form that can be defined for any monad. Thus in these cases, checking that a monad is a Hopf monad is reduced to checking one identity.
Publié le :
Classification : 18C15, 18M80, 18D99
Keywords: Hopf Monads, Biproducts, Fusion Operators, Fusion Invertor
@article{TAC_2023_39_a27,
     author = {Masahito Hasegawa and Jean-Simon Pacaud Lemay},
     title = {Hopf {Monads} on {Biproducts}},
     journal = {Theory and applications of categories},
     pages = {804--823},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a27/}
}
TY  - JOUR
AU  - Masahito Hasegawa
AU  - Jean-Simon Pacaud Lemay
TI  - Hopf Monads on Biproducts
JO  - Theory and applications of categories
PY  - 2023
SP  - 804
EP  - 823
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a27/
LA  - en
ID  - TAC_2023_39_a27
ER  - 
%0 Journal Article
%A Masahito Hasegawa
%A Jean-Simon Pacaud Lemay
%T Hopf Monads on Biproducts
%J Theory and applications of categories
%D 2023
%P 804-823
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a27/
%G en
%F TAC_2023_39_a27
Masahito Hasegawa; Jean-Simon Pacaud Lemay. Hopf Monads on Biproducts. Theory and applications of categories, Tome 39 (2023), pp. 804-823. http://geodesic.mathdoc.fr/item/TAC_2023_39_a27/