On the homotopy hypothesis for 3-groupoids
Theory and applications of categories, Tome 39 (2023), pp. 735-768
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We show that if the canonical left semi-model structure on the category of Grothendieck n-groupoids exists, then it satisfies the homotopy hypothesis, i.e. the associated (∞,1)-category is equivalent to that of homotopy n-types, thus generalizing a result of the first-named author. As a corollary of the second named author's proof of the existence of the canonical left semi-model structure for Grothendieck 3-groupoids, we obtain a proof of the homotopy hypothesis for Grothendieck 3-groupoids.
Publié le :
Classification :
18N20, 18N40, 18M90, 55U35
Keywords: Homotopy hypothesis, Grothendieck's ∞-groupoids, model categories
Keywords: Homotopy hypothesis, Grothendieck's ∞-groupoids, model categories
@article{TAC_2023_39_a25,
author = {Simon Henry and Edoardo Lanari},
title = {On the homotopy hypothesis for 3-groupoids},
journal = {Theory and applications of categories},
pages = {735--768},
year = {2023},
volume = {39},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a25/}
}
Simon Henry; Edoardo Lanari. On the homotopy hypothesis for 3-groupoids. Theory and applications of categories, Tome 39 (2023), pp. 735-768. http://geodesic.mathdoc.fr/item/TAC_2023_39_a25/