The category of L-algebras
Theory and applications of categories, Tome 39 (2023), pp. 598-624.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The category LAlg of L-algebras is shown to be complete and cocomplete, regular with a zero object and a projective generator, normal and subtractive, ideal determined, but not Barr-exact. Originating from algebraic logic, L-algebras arise in the theory of Garside groups, measure theory, functional analysis, and operator theory. It is shown that the category LAlg is far from protomodular, but it has natural semidirect products which have not been described in category-theoretic terms.
Publié le :
Classification : 08C05, 18D30, 06F05, 08A55, 18B10, 18C10
Keywords: L-algebra, regular category, Barr-exact, protomodular, semidirect product
@article{TAC_2023_39_a20,
     author = {Wolfgang Rump},
     title = {The category of {L-algebras}},
     journal = {Theory and applications of categories},
     pages = {598--624},
     publisher = {mathdoc},
     volume = {39},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2023_39_a20/}
}
TY  - JOUR
AU  - Wolfgang Rump
TI  - The category of L-algebras
JO  - Theory and applications of categories
PY  - 2023
SP  - 598
EP  - 624
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2023_39_a20/
LA  - en
ID  - TAC_2023_39_a20
ER  - 
%0 Journal Article
%A Wolfgang Rump
%T The category of L-algebras
%J Theory and applications of categories
%D 2023
%P 598-624
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2023_39_a20/
%G en
%F TAC_2023_39_a20
Wolfgang Rump. The category of L-algebras. Theory and applications of categories, Tome 39 (2023), pp. 598-624. http://geodesic.mathdoc.fr/item/TAC_2023_39_a20/