On Krull-Schmidt bicategories
Theory and applications of categories, Tome 38 (2022), pp. 232-256.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study the existence and uniqueness of direct sum decompositions in additive bicategories. We find a simple definition of Krull-Schmidt bicategories, for which we prove the uniqueness of decompositions into indecomposable objects as well as a characterization in terms of splitting of idempotents and properties of 2-cell endomorphism rings. Examples of Krull-Schmidt bicategories abound, with many arising from the various flavors of 2-dimensional linear representation theory.
Publié le :
Classification : 20J05, 18B40, 18N10, 18N25
Keywords: Bicategory, Krull--Schmidt property, 2-representation theory
@article{TAC_2022_38_a7,
     author = {Ivo Dell'Ambrogio},
     title = {On {Krull-Schmidt} bicategories},
     journal = {Theory and applications of categories},
     pages = {232--256},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a7/}
}
TY  - JOUR
AU  - Ivo Dell'Ambrogio
TI  - On Krull-Schmidt bicategories
JO  - Theory and applications of categories
PY  - 2022
SP  - 232
EP  - 256
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a7/
LA  - en
ID  - TAC_2022_38_a7
ER  - 
%0 Journal Article
%A Ivo Dell'Ambrogio
%T On Krull-Schmidt bicategories
%J Theory and applications of categories
%D 2022
%P 232-256
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a7/
%G en
%F TAC_2022_38_a7
Ivo Dell'Ambrogio. On Krull-Schmidt bicategories. Theory and applications of categories, Tome 38 (2022), pp. 232-256. http://geodesic.mathdoc.fr/item/TAC_2022_38_a7/