The Interpretation Lifting Theorem for C-Systems
Theory and applications of categories, Tome 38 (2022), pp. 214-231
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
In this article we present a solution to a conjecture of Vladimir Voevodsky regarding C-systems. This conjecture provides, under some assumptions, a lift of a functor M: CC -> C, where CC is a C-system and C a category, to a morphism of C-systems M': CC -> CC(\hat{C}, p_M). We explain the motivation behind this conjecture and introduce the required background material on C-systems. Finally, we give a proof of this conjecture. As we shall see the corresponding theorem allows to lift weak interpretations of type theory to strong ones.
Publié le :
Classification :
18C10, 18C50
Keywords: C-system, universe category, contextual category
Keywords: C-system, universe category, contextual category
@article{TAC_2022_38_a6,
author = {Anthony Bordg},
title = {The {Interpretation} {Lifting} {Theorem} for {C-Systems}},
journal = {Theory and applications of categories},
pages = {214--231},
year = {2022},
volume = {38},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a6/}
}
Anthony Bordg. The Interpretation Lifting Theorem for C-Systems. Theory and applications of categories, Tome 38 (2022), pp. 214-231. http://geodesic.mathdoc.fr/item/TAC_2022_38_a6/