Moment categories and operads
Theory and applications of categories, Tome 38 (2022), pp. 1485-1537.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A moment category is endowed with a distinguished set of split idempotents, called moments, which can be transported along morphisms. Equivalently, a moment category is a category with an active/inert factorisation system fulfilling two simple axioms. These axioms imply that the moments of a fixed object form a monoid, actually a left regular band.Each locally finite unital moment category defines a specific type of operad which records the combinatorics of partitioning moments into elementary ones. In this way the notions of symmetric, non-symmetric and n-operad correspond to unital moment structures on Γ, Δ and Θ_n respectively.There is an analog of the plus construction of Baez-Dolan taking a unital moment category C to a unital hypermoment category C^+. Under this construction, C-operads get identified with C^+-monoids, i.e. presheaves on C^+ satisfying strict Segal conditions. We show that the plus construction of Segal's category Γ embeds into the dendroidal category Ω of Moerdijk-Weiss.
Publié le :
Classification : 18A32, 18M60, 18M85, 18N70
Keywords: Moment category, Operad, Active/inert factorisation system, Strict Segal condition, Plus construction, Monadicity
@article{TAC_2022_38_a38,
     author = {Clemens Berger},
     title = {Moment categories and operads},
     journal = {Theory and applications of categories},
     pages = {1485--1537},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a38/}
}
TY  - JOUR
AU  - Clemens Berger
TI  - Moment categories and operads
JO  - Theory and applications of categories
PY  - 2022
SP  - 1485
EP  - 1537
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a38/
LA  - en
ID  - TAC_2022_38_a38
ER  - 
%0 Journal Article
%A Clemens Berger
%T Moment categories and operads
%J Theory and applications of categories
%D 2022
%P 1485-1537
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a38/
%G en
%F TAC_2022_38_a38
Clemens Berger. Moment categories and operads. Theory and applications of categories, Tome 38 (2022), pp. 1485-1537. http://geodesic.mathdoc.fr/item/TAC_2022_38_a38/