Double Categories of Relations
Theory and applications of categories, Tome 38 (2022), pp. 1249-1283.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A `double category of relations' is defined in this paper as a cartesian equipment in which every object is suitably discrete. The main result is a characterization theorem that a `double category of relations' is equivalent to a double category of relations on a regular category when it has strong and monic tabulators and a double-categorical subobject comprehension scheme. This result is based in part on the recent characterization of double categories of spans due to Aleiferi. The overall development can be viewed as a double-categorical version of that of the notion of a "functionally complete bicategory of relations" or a "tabular allegory".
Publié le :
Classification : 18N10, 18N25
Keywords: double categories, bicategories, relations, cartesian equipments, Frobenius Law
@article{TAC_2022_38_a32,
     author = {Michael Lambert},
     title = {Double {Categories} of {Relations}},
     journal = {Theory and applications of categories},
     pages = {1249--1283},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a32/}
}
TY  - JOUR
AU  - Michael Lambert
TI  - Double Categories of Relations
JO  - Theory and applications of categories
PY  - 2022
SP  - 1249
EP  - 1283
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a32/
LA  - en
ID  - TAC_2022_38_a32
ER  - 
%0 Journal Article
%A Michael Lambert
%T Double Categories of Relations
%J Theory and applications of categories
%D 2022
%P 1249-1283
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a32/
%G en
%F TAC_2022_38_a32
Michael Lambert. Double Categories of Relations. Theory and applications of categories, Tome 38 (2022), pp. 1249-1283. http://geodesic.mathdoc.fr/item/TAC_2022_38_a32/