Q-system completion is a 3-functor
Theory and applications of categories, Tome 38 (2022), pp. 101-134.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Q-systems are unitary versions of Frobenius algebra objects which appeared in the theory of subfactors. In recent joint work with R. Hernández Palomares and C. Jones, the authors defined a notion of Q-system completion for C*/W* 2-categories, which is a unitary version of a higher idempotent completion in the spirit of Douglas-Reutter and Gaiotto-Johnson-Freyd. In this article, we prove that Q-system completion is a dagger 3-functor on the dagger 3-category of C*/W* 2-categories. We also prove that Q-system completion satisfies a universal property analogous to the universal property satisfied by idempotent completion for 1-categories.
Publié le :
Classification : 46M15, 18N10, 18N20, 18M30
Keywords: Q-systems, higher idempotent completion, C*/W* 2-categories, 3-functors
@article{TAC_2022_38_a3,
     author = {Quan Chen and David Penneys},
     title = {Q-system completion is a 3-functor},
     journal = {Theory and applications of categories},
     pages = {101--134},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a3/}
}
TY  - JOUR
AU  - Quan Chen
AU  - David Penneys
TI  - Q-system completion is a 3-functor
JO  - Theory and applications of categories
PY  - 2022
SP  - 101
EP  - 134
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a3/
LA  - en
ID  - TAC_2022_38_a3
ER  - 
%0 Journal Article
%A Quan Chen
%A David Penneys
%T Q-system completion is a 3-functor
%J Theory and applications of categories
%D 2022
%P 101-134
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a3/
%G en
%F TAC_2022_38_a3
Quan Chen; David Penneys. Q-system completion is a 3-functor. Theory and applications of categories, Tome 38 (2022), pp. 101-134. http://geodesic.mathdoc.fr/item/TAC_2022_38_a3/