A topos for continuous logic
Theory and applications of categories, Tome 38 (2022), pp. 1108-1135.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We suggest an ordering for the predicates in continuous logic so that the semantics of continuous logic can be formulated as a hyperdoctrine. We show that this hyperdoctrine can be embedded into the hyperdoctrine of subobjects of a suitable Grothendieck topos. For this embedding we use a simplification of the hyperdoctrine for continuous logic, whose category of equivalence relations is equivalent to the category of complete metric spaces and uniformly continuous maps.
Publié le :
Classification : 03C66, 03G30, 18F10
Keywords: Continuous logic, metric spaces, categorical logic, hyperdoctrines, Grothendieck toposes
@article{TAC_2022_38_a27,
     author = {Daniel Figueroa and Benno van den Berg},
     title = {A topos for continuous logic},
     journal = {Theory and applications of categories},
     pages = {1108--1135},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a27/}
}
TY  - JOUR
AU  - Daniel Figueroa
AU  - Benno van den Berg
TI  - A topos for continuous logic
JO  - Theory and applications of categories
PY  - 2022
SP  - 1108
EP  - 1135
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a27/
LA  - en
ID  - TAC_2022_38_a27
ER  - 
%0 Journal Article
%A Daniel Figueroa
%A Benno van den Berg
%T A topos for continuous logic
%J Theory and applications of categories
%D 2022
%P 1108-1135
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a27/
%G en
%F TAC_2022_38_a27
Daniel Figueroa; Benno van den Berg. A topos for continuous logic. Theory and applications of categories, Tome 38 (2022), pp. 1108-1135. http://geodesic.mathdoc.fr/item/TAC_2022_38_a27/