The bicategory of topological correspondences
Theory and applications of categories, Tome 38 (2022), pp. 843-897.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

It is known that a topological correspondence (X,\lambda) from a locally compact groupoid with a Haar system (G,\alpha) to another one, (H,\beta), produces a C*-correspondence H(X,\lambda) from C^*(G,\alpha) to C^*(H,\beta). We described the composition of two topological correspondences in one of our earlier articles. In the present article, we prove that second countable locally compact Hausdorff groupoids with Haar systems form a bicategory T when equipped with topological correspondences as 1-arrows and isomorphisms of topological correspondences as 2-arrows. On the other hand, it well-known that C*-algebras form a bicategory C with C*-correspondences as 1-arrows, and the unitary isomorphisms of Hilbert C*-modules that intertwine the representations serve as the 2-arrows. In this article, we show that a topological correspondence going to a C*-one is a bifunctor T to C. Finally, we show that in the sub-bicategory of T consisting of the Macho-Stadler-O'uchi correspondences, invertible 1-arrows are exactly the groupoid equivalences.
Publié le :
Classification : 22D25, 22A22, 47L30, 46L08, 58B30, 46L89, 18D05.
Keywords: Topological correspondences, bicategory of topological correspondences, functoriality of topological correspondences
@article{TAC_2022_38_a21,
     author = {Rohit Dilip Holkar},
     title = {The bicategory of topological correspondences},
     journal = {Theory and applications of categories},
     pages = {843--897},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a21/}
}
TY  - JOUR
AU  - Rohit Dilip Holkar
TI  - The bicategory of topological correspondences
JO  - Theory and applications of categories
PY  - 2022
SP  - 843
EP  - 897
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a21/
LA  - en
ID  - TAC_2022_38_a21
ER  - 
%0 Journal Article
%A Rohit Dilip Holkar
%T The bicategory of topological correspondences
%J Theory and applications of categories
%D 2022
%P 843-897
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a21/
%G en
%F TAC_2022_38_a21
Rohit Dilip Holkar. The bicategory of topological correspondences. Theory and applications of categories, Tome 38 (2022), pp. 843-897. http://geodesic.mathdoc.fr/item/TAC_2022_38_a21/