On the classification of symplectic DQ-algebroids
Theory and applications of categories, Tome 38 (2022), pp. 64-100
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
DQ-algebroids locally defined on a symplectic manifold form a 2-gerbe. By adapting the method of P. Deligne to the setting of DQ-algebroids we show that this 2-gerbe admits a canonical global section, namely that every symplectic manifold admits a canonical DQ-algebroid quantizing the structure sheaf. The construction relies on methods of non-abelian cohomology and local computations in the Weyl algebra. As a corollary we obtain a classification of symplectic DQ-algebroids.
Publié le :
Classification :
53D55
Keywords: DQ-algebroid, gerbe, deformation quantization
Keywords: DQ-algebroid, gerbe, deformation quantization
@article{TAC_2022_38_a2,
author = {Paul Bressler and Juan Diego Rojas},
title = {On the classification of symplectic {DQ-algebroids}},
journal = {Theory and applications of categories},
pages = {64--100},
year = {2022},
volume = {38},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a2/}
}
Paul Bressler; Juan Diego Rojas. On the classification of symplectic DQ-algebroids. Theory and applications of categories, Tome 38 (2022), pp. 64-100. http://geodesic.mathdoc.fr/item/TAC_2022_38_a2/