On the classification of symplectic DQ-algebroids
Theory and applications of categories, Tome 38 (2022), pp. 64-100.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

DQ-algebroids locally defined on a symplectic manifold form a 2-gerbe. By adapting the method of P. Deligne to the setting of DQ-algebroids we show that this 2-gerbe admits a canonical global section, namely that every symplectic manifold admits a canonical DQ-algebroid quantizing the structure sheaf. The construction relies on methods of non-abelian cohomology and local computations in the Weyl algebra. As a corollary we obtain a classification of symplectic DQ-algebroids.
Publié le :
Classification : 53D55
Keywords: DQ-algebroid, gerbe, deformation quantization
@article{TAC_2022_38_a2,
     author = {Paul Bressler and Juan Diego Rojas},
     title = {On the classification of symplectic {DQ-algebroids}},
     journal = {Theory and applications of categories},
     pages = {64--100},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a2/}
}
TY  - JOUR
AU  - Paul Bressler
AU  - Juan Diego Rojas
TI  - On the classification of symplectic DQ-algebroids
JO  - Theory and applications of categories
PY  - 2022
SP  - 64
EP  - 100
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a2/
LA  - en
ID  - TAC_2022_38_a2
ER  - 
%0 Journal Article
%A Paul Bressler
%A Juan Diego Rojas
%T On the classification of symplectic DQ-algebroids
%J Theory and applications of categories
%D 2022
%P 64-100
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a2/
%G en
%F TAC_2022_38_a2
Paul Bressler; Juan Diego Rojas. On the classification of symplectic DQ-algebroids. Theory and applications of categories, Tome 38 (2022), pp. 64-100. http://geodesic.mathdoc.fr/item/TAC_2022_38_a2/