Coherence for bicategories, lax functors, and shadows
Theory and applications of categories, Tome 38 (2022), pp. 328-373.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Coherence theorems are fundamental to how we think about monoidal categories and their generalizations. In this paper we revisit Mac Lane's original proof of coherence for monoidal categories using the Grothendieck construction. This perspective makes the approach of Mac Lane's proof very amenable to generalization. We use the technique to give efficient proofs of many standard coherence theorems and new coherence results for bicategories with shadow and for their functors.
Publié le :
Classification : 18M05, 18N10
Keywords: coherence, monoidal categories, bicategories, bicategories with shadows, lax monoidal functors, lax shadow functors
@article{TAC_2022_38_a11,
     author = {Cary Malkiewich and Kate Ponto},
     title = {Coherence for bicategories, lax functors, and shadows},
     journal = {Theory and applications of categories},
     pages = {328--373},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a11/}
}
TY  - JOUR
AU  - Cary Malkiewich
AU  - Kate Ponto
TI  - Coherence for bicategories, lax functors, and shadows
JO  - Theory and applications of categories
PY  - 2022
SP  - 328
EP  - 373
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a11/
LA  - en
ID  - TAC_2022_38_a11
ER  - 
%0 Journal Article
%A Cary Malkiewich
%A Kate Ponto
%T Coherence for bicategories, lax functors, and shadows
%J Theory and applications of categories
%D 2022
%P 328-373
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a11/
%G en
%F TAC_2022_38_a11
Cary Malkiewich; Kate Ponto. Coherence for bicategories, lax functors, and shadows. Theory and applications of categories, Tome 38 (2022), pp. 328-373. http://geodesic.mathdoc.fr/item/TAC_2022_38_a11/