Weak Fraïssé categories
Theory and applications of categories, Tome 38 (2022), pp. 27-63
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We develop the theory of weak Fraïssé categories, in which the crucial concept is the weak amalgamation property, discovered relatively recently in model theory. We show that, in a suitable framework, every weak Fraïssé category has its unique generic limit, a special object in a bigger category, characterized by a certain variant of injectivity. This significantly extends the present theory of Fraïssé limits.
Publié le :
Classification :
Primary 03C95, Secondary 18A30
Keywords: Weak amalgamation property, generic object, Fraïssé limit
Keywords: Weak amalgamation property, generic object, Fraïssé limit
@article{TAC_2022_38_a1,
author = {Wies{\l}aw Kubi\'s},
title = {Weak {Fra{\"\i}ss\'e} categories},
journal = {Theory and applications of categories},
pages = {27--63},
year = {2022},
volume = {38},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a1/}
}
Wiesław Kubiś. Weak Fraïssé categories. Theory and applications of categories, Tome 38 (2022), pp. 27-63. http://geodesic.mathdoc.fr/item/TAC_2022_38_a1/