Weak Fraïssé categories
Theory and applications of categories, Tome 38 (2022), pp. 27-63.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We develop the theory of weak Fraïssé categories, in which the crucial concept is the weak amalgamation property, discovered relatively recently in model theory. We show that, in a suitable framework, every weak Fraïssé category has its unique generic limit, a special object in a bigger category, characterized by a certain variant of injectivity. This significantly extends the present theory of Fraïssé limits.
Publié le :
Classification : Primary 03C95, Secondary 18A30
Keywords: Weak amalgamation property, generic object, Fraïssé limit
@article{TAC_2022_38_a1,
     author = {Wies{\l}aw Kubi\'s},
     title = {Weak {Fra{\"\i}ss\'e} categories},
     journal = {Theory and applications of categories},
     pages = {27--63},
     publisher = {mathdoc},
     volume = {38},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2022_38_a1/}
}
TY  - JOUR
AU  - Wiesław Kubiś
TI  - Weak Fraïssé categories
JO  - Theory and applications of categories
PY  - 2022
SP  - 27
EP  - 63
VL  - 38
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2022_38_a1/
LA  - en
ID  - TAC_2022_38_a1
ER  - 
%0 Journal Article
%A Wiesław Kubiś
%T Weak Fraïssé categories
%J Theory and applications of categories
%D 2022
%P 27-63
%V 38
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2022_38_a1/
%G en
%F TAC_2022_38_a1
Wiesław Kubiś. Weak Fraïssé categories. Theory and applications of categories, Tome 38 (2022), pp. 27-63. http://geodesic.mathdoc.fr/item/TAC_2022_38_a1/