The 2-nerve of a 2-group and Deligne's determinant functors
Theory and applications of categories, Tome 37 (2021), pp. 227-265.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove that the bisimplicial set obtained by applying the 2-nerve functor of Lack and Paoli to a 2-group seen as a bicategory with one object, is a fibrant object in the universal simplicial replacement of Dugger of the model category of reduced homotopy 2-types. As an application we deduce a well known theorem about (non-symmetric) determinant functors for Waldhausen categories or derivators.
Publié le :
Classification : 18N50, 55P15, 55U35, 55P05, 18G45, 18F25
Keywords: Reduced homotopy n-type, geometric nerve for monoidal categories, 2-group, determinant functor, simplicial model category
@article{TAC_2021_37_a7,
     author = {Elhoim Sumano},
     title = {The 2-nerve of a 2-group and  {Deligne's} determinant functors},
     journal = {Theory and applications of categories},
     pages = {227--265},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a7/}
}
TY  - JOUR
AU  - Elhoim Sumano
TI  - The 2-nerve of a 2-group and  Deligne's determinant functors
JO  - Theory and applications of categories
PY  - 2021
SP  - 227
EP  - 265
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a7/
LA  - en
ID  - TAC_2021_37_a7
ER  - 
%0 Journal Article
%A Elhoim Sumano
%T The 2-nerve of a 2-group and  Deligne's determinant functors
%J Theory and applications of categories
%D 2021
%P 227-265
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a7/
%G en
%F TAC_2021_37_a7
Elhoim Sumano. The 2-nerve of a 2-group and  Deligne's determinant functors. Theory and applications of categories, Tome 37 (2021), pp. 227-265. http://geodesic.mathdoc.fr/item/TAC_2021_37_a7/