Locally anisotropic toposes II
Theory and applications of categories, Tome 37 (2021), pp. 914-939.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Every Grothendieck topos has internal to it a canonical group object, called its isotropy. We continue our investigation of this group, focusing again on locally anisotropic toposes. Such a topos is one admitting an étale cover by an anisotropic topos. We present a structural analysis of this class of toposes by showing that a topos is locally anisotropic if and only if it is equivalent to the topos of actions of a connected groupoid internal to an anisotropic topos. In particular we may conclude that a locally anisotropic topos, whence an étendue, has isotropy rank at most one, meaning that its isotropy quotient has trivial isotropy.
Publié le :
Classification : 18B25, 18B40, 18E50, 18F10
Keywords: toposes, isotropy, Galois theory, inverse semigroups
@article{TAC_2021_37_a26,
     author = {Jonathon Funk and Pieter Hofstra},
     title = {Locally anisotropic toposes {II}},
     journal = {Theory and applications of categories},
     pages = {914--939},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a26/}
}
TY  - JOUR
AU  - Jonathon Funk
AU  - Pieter Hofstra
TI  - Locally anisotropic toposes II
JO  - Theory and applications of categories
PY  - 2021
SP  - 914
EP  - 939
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a26/
LA  - en
ID  - TAC_2021_37_a26
ER  - 
%0 Journal Article
%A Jonathon Funk
%A Pieter Hofstra
%T Locally anisotropic toposes II
%J Theory and applications of categories
%D 2021
%P 914-939
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a26/
%G en
%F TAC_2021_37_a26
Jonathon Funk; Pieter Hofstra. Locally anisotropic toposes II. Theory and applications of categories, Tome 37 (2021), pp. 914-939. http://geodesic.mathdoc.fr/item/TAC_2021_37_a26/