Voir la notice de l'article provenant de la source Theory and Applications of Categories website
@article{TAC_2021_37_a25, author = {Richard Garner and Thomas Streicher}, title = {An {Essential} {Local} {Geometric} {Morphism} which is not {Locally} {Connected} though its {Inverse} {Image} {Part} is an {Exponential} {Ideal}}, journal = {Theory and applications of categories}, pages = {908--913}, publisher = {mathdoc}, volume = {37}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a25/} }
TY - JOUR AU - Richard Garner AU - Thomas Streicher TI - An Essential Local Geometric Morphism which is not Locally Connected though its Inverse Image Part is an Exponential Ideal JO - Theory and applications of categories PY - 2021 SP - 908 EP - 913 VL - 37 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2021_37_a25/ LA - en ID - TAC_2021_37_a25 ER -
%0 Journal Article %A Richard Garner %A Thomas Streicher %T An Essential Local Geometric Morphism which is not Locally Connected though its Inverse Image Part is an Exponential Ideal %J Theory and applications of categories %D 2021 %P 908-913 %V 37 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2021_37_a25/ %G en %F TAC_2021_37_a25
Richard Garner; Thomas Streicher. An Essential Local Geometric Morphism which is not Locally Connected though its Inverse Image Part is an Exponential Ideal. Theory and applications of categories, Tome 37 (2021), pp. 908-913. http://geodesic.mathdoc.fr/item/TAC_2021_37_a25/