Coherent Nerves for Higher Quasicategories
Theory and applications of categories, Tome 37 (2021), pp. 709-817.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce, for C a regular Cartesian Reedy category a model category whose fibrant objects are an analogue of quasicategories enriched in simplicial presheaves on C. We then develop a coherent realization and nerve for this model structure and demonstrate that these give a Quillen equivalence, in particular recovering the classical one in the process. We then demonstrate that this equivalence descends to any Cartesian closed left Bousfield localization in a natural way. As an application, we demonstrate a version of Yoneda's lemma for quasicategories enriched in any such Cartesian closed localization.
Publié le :
Classification : 18A30, 18D05, 18E35, 18G55, 55P10, 55U35
Keywords: enriched categories, higher category theory, homotopy theory
@article{TAC_2021_37_a22,
     author = {Harry Gindi},
     title = {Coherent {Nerves} for {Higher} {Quasicategories}},
     journal = {Theory and applications of categories},
     pages = {709--817},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a22/}
}
TY  - JOUR
AU  - Harry Gindi
TI  - Coherent Nerves for Higher Quasicategories
JO  - Theory and applications of categories
PY  - 2021
SP  - 709
EP  - 817
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a22/
LA  - en
ID  - TAC_2021_37_a22
ER  - 
%0 Journal Article
%A Harry Gindi
%T Coherent Nerves for Higher Quasicategories
%J Theory and applications of categories
%D 2021
%P 709-817
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a22/
%G en
%F TAC_2021_37_a22
Harry Gindi. Coherent Nerves for Higher Quasicategories. Theory and applications of categories, Tome 37 (2021), pp. 709-817. http://geodesic.mathdoc.fr/item/TAC_2021_37_a22/