Left properness of flows
Theory and applications of categories, Tome 37 (2021), pp. 562-612.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Using Reedy techniques, this paper gives a correct proof of the left properness of the q-model structure of flows. It fixes the preceding proof which relies on an incorrect argument. The last section is devoted to fixing some arguments published in past papers coming from this incorrect argument. These Reedy techniques also enable us to study the interactions between the path space functor of flows with various notions of cofibrations. The proofs of this paper are written to work with many convenient categories of topological spaces like the ones of k-spaces and of weakly Hausdorff k-spaces and their locally presentable analogues, the Δ-generated spaces and the Δ-Hausdorff Δ-generated spaces.
Publié le :
Classification : 55U35, 18C35, 18G55, 68Q85
Keywords: d-space, flow, topological model of concurrency, combinatorial model category, enriched semicategory, enriched non-unital category, locally presentable category, left proper model category, Reedy category
@article{TAC_2021_37_a18,
     author = {Philippe Gaucher},
     title = {Left properness of flows},
     journal = {Theory and applications of categories},
     pages = {562--612},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a18/}
}
TY  - JOUR
AU  - Philippe Gaucher
TI  - Left properness of flows
JO  - Theory and applications of categories
PY  - 2021
SP  - 562
EP  - 612
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a18/
LA  - en
ID  - TAC_2021_37_a18
ER  - 
%0 Journal Article
%A Philippe Gaucher
%T Left properness of flows
%J Theory and applications of categories
%D 2021
%P 562-612
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a18/
%G en
%F TAC_2021_37_a18
Philippe Gaucher. Left properness of flows. Theory and applications of categories, Tome 37 (2021), pp. 562-612. http://geodesic.mathdoc.fr/item/TAC_2021_37_a18/