A homotopy theory of coherently commutative monoidal quasi-categories
Theory and applications of categories, Tome 37 (2021), pp. 418-481.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The main objective of this paper is to construct a symmetric monoidal closed model category of coherently commutative monoidal quasi-categories. We construct another model category structure whose fibrant objects are (essentially) those coCartesian fibrations which represent objects that are known as symmetric monoidal quasi-categories in the literature. We go on to establish a zig zag of Quillen equivalences between the two model categories.
Publié le :
Classification : 18N60, 18M05, 18N40, 18N55, 18F25, 19D23
Keywords: Symmetric monoidal quasi-categories, coherently commutative monoidal quasi-categories
@article{TAC_2021_37_a15,
     author = {Amit Sharma},
     title = {A homotopy theory of coherently commutative monoidal quasi-categories},
     journal = {Theory and applications of categories},
     pages = {418--481},
     publisher = {mathdoc},
     volume = {37},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_37_a15/}
}
TY  - JOUR
AU  - Amit Sharma
TI  - A homotopy theory of coherently commutative monoidal quasi-categories
JO  - Theory and applications of categories
PY  - 2021
SP  - 418
EP  - 481
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_37_a15/
LA  - en
ID  - TAC_2021_37_a15
ER  - 
%0 Journal Article
%A Amit Sharma
%T A homotopy theory of coherently commutative monoidal quasi-categories
%J Theory and applications of categories
%D 2021
%P 418-481
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_37_a15/
%G en
%F TAC_2021_37_a15
Amit Sharma. A homotopy theory of coherently commutative monoidal quasi-categories. Theory and applications of categories, Tome 37 (2021), pp. 418-481. http://geodesic.mathdoc.fr/item/TAC_2021_37_a15/