The canonical intensive quality of a cohesive topos
Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 250-279.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We strengthen a result of Lawvere by proving that every pre-cohesive geometric morphism p: E --> S has a canonical intensive quality s: E --> L. We also discuss examples among bounded pre-cohesive p: E --> S and, in particular, we show that if E is a presheaf topos then so is L. This result lifts to Grothendieck toposes but the sites obtained need not be subcanonical. To illustrate this phenomenon, and also the subtle passage from E to L, we consider a particular family of bounded cohesive toposes over Set and build subcanonical sites for their associated categories L.
Publié le :
Classification : 18B25, 03G30, 18F99
Keywords: Axiomatic Cohesion, Topos theory, Geometric morphisms, Intensive quality
@article{TAC_2021_36_a8,
     author = {F. Marmolejo and M. Menni},
     title = {The canonical intensive quality of a cohesive topos},
     journal = {Theory and applications of categories},
     pages = {250--279},
     publisher = {mathdoc},
     volume = {36},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_36_a8/}
}
TY  - JOUR
AU  - F. Marmolejo
AU  - M. Menni
TI  - The canonical intensive quality of a cohesive topos
JO  - Theory and applications of categories
PY  - 2021
SP  - 250
EP  - 279
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_36_a8/
LA  - en
ID  - TAC_2021_36_a8
ER  - 
%0 Journal Article
%A F. Marmolejo
%A M. Menni
%T The canonical intensive quality of a cohesive topos
%J Theory and applications of categories
%D 2021
%P 250-279
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_36_a8/
%G en
%F TAC_2021_36_a8
F. Marmolejo; M. Menni. The canonical intensive quality of a cohesive topos. Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 250-279. http://geodesic.mathdoc.fr/item/TAC_2021_36_a8/