Spec(Z) and the Gromov Norm
Theory and applications of categories, Tome 35 (2020), pp. 155-178
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We define the homology of a simplicial set with coefficients in a Segal's Gamma-set (s-module). We show the relevance of this new homology with values in s-modules by proving that taking as coefficients the s-modules at the archimedean place over the structure sheaf on Spec(Z), one obtains on the singular homology with real coefficients of a topological space X, a norm equivalent to the Gromov norm. Moreover, we prove that the two norms agree when X is an oriented compact Riemann surface.
Publié le :
Classification :
16Y60, 20N20, 18G55, 18G30, 18G35, 18G55, 18G60, 14G40
Keywords: Gamma spaces, Gamma rings, Site, Gromov norm, Arakelov geometry, Homology theory
Keywords: Gamma spaces, Gamma rings, Site, Gromov norm, Arakelov geometry, Homology theory
@article{TAC_2020_35_a5,
author = {Alain Connes and Caterina Consani},
title = {Spec(Z) and the {Gromov} {Norm}},
journal = {Theory and applications of categories},
pages = {155--178},
year = {2020},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a5/}
}
Alain Connes; Caterina Consani. Spec(Z) and the Gromov Norm. Theory and applications of categories, Tome 35 (2020), pp. 155-178. http://geodesic.mathdoc.fr/item/TAC_2020_35_a5/