Internal split opfibrations and cofunctors
Theory and applications of categories, Tome 35 (2020), pp. 1608-1633.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Split opfibrations are functors equipped with a suitable choice of opcartesian lifts. The purpose of this paper is to characterise internal split opfibrations through separating the structure of a suitable choice of lifts from the property of these lifts being opcartesian. The underlying structure of an internal split opfibration is captured by an internal functor equipped with an internal cofunctor, while the property may be expressed as a pullback condition, akin to the simple condition on an internal functor to be an internal discrete opfibration. Furthermore, this approach provides two additional characterisations of internal split opfibrations, via the décalage construction and strict factorisation systems. For small categories, this theory clarifies several aspects of delta lenses which arise in computer science.
Publié le :
Classification : 18D30, 18D40
Keywords: internal category, fibration, cofunctor, lens
@article{TAC_2020_35_a43,
     author = {Bryce Clarke},
     title = {Internal split opfibrations and cofunctors},
     journal = {Theory and applications of categories},
     pages = {1608--1633},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a43/}
}
TY  - JOUR
AU  - Bryce Clarke
TI  - Internal split opfibrations and cofunctors
JO  - Theory and applications of categories
PY  - 2020
SP  - 1608
EP  - 1633
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a43/
LA  - en
ID  - TAC_2020_35_a43
ER  - 
%0 Journal Article
%A Bryce Clarke
%T Internal split opfibrations and cofunctors
%J Theory and applications of categories
%D 2020
%P 1608-1633
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a43/
%G en
%F TAC_2020_35_a43
Bryce Clarke. Internal split opfibrations and cofunctors. Theory and applications of categories, Tome 35 (2020), pp. 1608-1633. http://geodesic.mathdoc.fr/item/TAC_2020_35_a43/