The Existential Completion
Theory and applications of categories, Tome 35 (2020), pp. 1576-1607.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We determine the existential completion of a primary doctrine, and we prove that the 2-monad obtained from it is lax-idempotent, and that the 2-category of existential doctrines is isomorphic to the 2-category of algebras for this 2-monad. We also show that the existential completion of an elementary doctrine is again elementary. Finally we extend the notion of exact completion of an elementary existential doctrine to an arbitrary elementary doctrine.
Publié le :
Classification : 18C10, 18C15, 18D05
Keywords: existential completion, doctrines, property-like monad, tripos
@article{TAC_2020_35_a42,
     author = {Davide Trotta},
     title = {The {Existential} {Completion}},
     journal = {Theory and applications of categories},
     pages = {1576--1607},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a42/}
}
TY  - JOUR
AU  - Davide Trotta
TI  - The Existential Completion
JO  - Theory and applications of categories
PY  - 2020
SP  - 1576
EP  - 1607
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a42/
LA  - en
ID  - TAC_2020_35_a42
ER  - 
%0 Journal Article
%A Davide Trotta
%T The Existential Completion
%J Theory and applications of categories
%D 2020
%P 1576-1607
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a42/
%G en
%F TAC_2020_35_a42
Davide Trotta. The Existential Completion. Theory and applications of categories, Tome 35 (2020), pp. 1576-1607. http://geodesic.mathdoc.fr/item/TAC_2020_35_a42/