Transfer of a generalised groupoid action along a Morita equivalence
Theory and applications of categories, Tome 35 (2020), pp. 1549-1563.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Buss and Meyer define fibrations of topological groupoids and interpret a groupoid fibration L --> H with fibre G as a generalised action of H on G by groupoid equivalences. My result shows that a generalised action of H on G may be transported along a Morita equivalence G ~ K to a generalised action of H on K, which is given from a fibration R --> H with fibre K. Furthermore, topological groupoids R and L are Morita equivalent.
Publié le :
Classification : 22A99
Keywords: topological groupoid, Morita equivalence, groupoid fibration, generalised groupoid action, fibre of a groupoid fibration
@article{TAC_2020_35_a40,
     author = {Giorgi Arabidze},
     title = {Transfer of a generalised groupoid action  along a {Morita} equivalence},
     journal = {Theory and applications of categories},
     pages = {1549--1563},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a40/}
}
TY  - JOUR
AU  - Giorgi Arabidze
TI  - Transfer of a generalised groupoid action  along a Morita equivalence
JO  - Theory and applications of categories
PY  - 2020
SP  - 1549
EP  - 1563
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a40/
LA  - en
ID  - TAC_2020_35_a40
ER  - 
%0 Journal Article
%A Giorgi Arabidze
%T Transfer of a generalised groupoid action  along a Morita equivalence
%J Theory and applications of categories
%D 2020
%P 1549-1563
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a40/
%G en
%F TAC_2020_35_a40
Giorgi Arabidze. Transfer of a generalised groupoid action  along a Morita equivalence. Theory and applications of categories, Tome 35 (2020), pp. 1549-1563. http://geodesic.mathdoc.fr/item/TAC_2020_35_a40/