Transfer of a generalised groupoid action along a Morita equivalence
Theory and applications of categories, Tome 35 (2020), pp. 1549-1563
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Buss and Meyer define fibrations of topological groupoids and interpret a groupoid fibration L --> H with fibre G as a generalised action of H on G by groupoid equivalences. My result shows that a generalised action of H on G may be transported along a Morita equivalence G ~ K to a generalised action of H on K, which is given from a fibration R --> H with fibre K. Furthermore, topological groupoids R and L are Morita equivalent.
Publié le :
Classification :
22A99
Keywords: topological groupoid, Morita equivalence, groupoid fibration, generalised groupoid action, fibre of a groupoid fibration
Keywords: topological groupoid, Morita equivalence, groupoid fibration, generalised groupoid action, fibre of a groupoid fibration
@article{TAC_2020_35_a40,
author = {Giorgi Arabidze},
title = {Transfer of a generalised groupoid action along a {Morita} equivalence},
journal = {Theory and applications of categories},
pages = {1549--1563},
year = {2020},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a40/}
}
Giorgi Arabidze. Transfer of a generalised groupoid action along a Morita equivalence. Theory and applications of categories, Tome 35 (2020), pp. 1549-1563. http://geodesic.mathdoc.fr/item/TAC_2020_35_a40/